In 2003, Dr. Paul Hebert at the University of Guelph in Ontario, Canada, proposed “DNA barcoding” as a way to identify species. Barcoding uses a very short genetic sequence from a standard part of the genome the way a supermarket scanner distinguishes products using the black stripes of the Universal Product Code. Two items may look very similar to the untrained eye, but in both cases the barcodes are distinct.
Until now, biological specimens were identified using morphological features. In some cases a trained technician could make routine identifications using morphological “keys”, but in most cases an experienced professional taxonomist is needed. If a specimen is damaged or is in an immature stage of development, even specialists may be unable to make identifications. Barcoding solves these problems, because non-specialists can obtain barcodes from tiny amounts of tissue. This is not to say that traditional taxonomy has become less important, but rather that DNA barcoding can serve a dual purpose as a new tool in the taxonomists toolbox supplementing his/ her knowledge as well as being an innovative device for non-experts who need to make a quick identification.
The gene region that is being used as the standard barcode for almost all animal groups is a 648 base-pair region in the mitochondrial cytochrome c oxidase 1 gene (“CO1”). COI is proving highly effective in identifying birds, butterflies, fish, flies and many other animal groups. COI is not an effective barcode region in plants because it evolves too slowly, but botanists are now close to identifying a combination of gene regions that will serve as a barcode region for plants.
No comments:
Post a Comment